
Two Ways to Bake Your Pizza
— Translating Parameterised Types into Java

Martin Odersky1, Enno Runne2, and Philip Wadler3

1 Ecole Polytechnique Fèdèrale de Lausanne†

Martin.Odersky@epfl.ch
2 University of Karlsruhe‡

enno.runne@ira.uka.de
3 Lucent Technologies

wadler@research.bell-labs.com

Abstract. We have identified in previous work two translations for
parametrically typed extensions of Java. The homogeneous translation
maps type variables to a uniform representation, while the heterogeneous
translation expands the program by specialising parameterised classes
according to their arguments. This paper describes both translations in
detail, compares their time and space requirements and discusses how
each affects the Java security model.

1 Introduction

Java does not provide parameterised types, but is designed to make them rel-
atively easy to simulate. Consider java.util.Hashtable, the standard library
class whose declaration is shown in Figure 1. The Hashtable design uses Object
as the type of both keys and values. Every reference type is a subtype of Object,
and so may be used as a key or value. It is up to the user to recall what types have
been used, and perform appropriate casts. For instance, the HashtableClient
class uses a hashtable with keys of type String and values of type Class.
Lookups in the hashtable return an Object value that must be cast to a Class.

Idioms like this are widespread in the Java library, including simple utilities
like stacks and vectors, the event model introduced for Java 1.1 (where events
may return values of arbitrary type), the JavaBeans library (which depends on
events), and the collection classes planned for Java 1.2 (which provides generic
collections, sets, lists, and hashtables).

In Pizza [OW97a], we have extended Java with features common in functional
programming languages. The most important extension in Pizza is its type sys-
tem, which supports parameterised types. Figure 2 shows how hashtables are
defined in Pizza. Here, Key and Data are type parameters for the Hashtable
class. Access code for parameterised hash tables no longer needs a type cast to
recover the types of the retrieved elements.
† This work was completed while at the University of South Australia.
‡ This work was completed while at the University of South Australia.

M. Jazayeri, R. Loos, D. Musser (Eds.): Generic Programming ’98, LNCS 1766, pp. 114–132, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Translating Parameterised Types into Java 115

public class Hashtable {
public Hashtable () { ... }
public Object get(Object key) { ... }
public Object put(Object key, Object value) { ... }

}

class HashtableClient {
private Hashtable loadedClasses = new Hashtable();
public Class loadClass(String name) {

Class c = (Class)loadedClasses.get(name);
if (c == null) {

c = Class.forName(name);
loadedClasses.put(name, c);

}
return c;

}
}

Fig. 1. Hashtables in Java.

There have been also several other proposals to extend Java with param-
eterised types [MBL97,AFM97,Bru97], with roughly similar capabilities as the
Pizza approach, as well as proposals to extend Java with virtual types [Tho97],
[Tor97], with capabilities quite different to it [OW97b]. Pizza differs from these
other proposals in that it admits basic types as type parameters and in that it
has polymorphic methods in addition to parameterised types.

Generally, there is widespread agreement that a generic type system with
its benefits for the construction of reliable software systems is a useful addition
to Java. It is less clear how such a type system should be implemented in the
confines of the Java Virtual Machine. In earlier work [OW97a] we outlined two
translations from Pizza’s generic types to Java. In this paper we present the two
translations in detail, discuss their security aspects, and compare their resource
consumption empirically.

The homogeneous translation maps a parameterised class into a single class
that represents all its instantiations. For example, the homogeneous transla-
tion of the Pizza code for parametric hashtables in Figure 2 yields essentially
the Java code in Figure 1. The homogeneous translation is similar to schemes
for implementing parametric polymorphism in ML [Ler90,SA95]. The homoge-
neous translation underlies the current Pizza compiler whose use has become
widespread since December 1996. This translation yields compact code that can
run in standard Java-enabled browsers.

By contrast, the heterogeneous translation maps a parameterised class
into a separate class for each instantiation. For example, the heterogeneous
translation of the Pizza class Hashtable<Key,Value> replaces the instance
Hashtable<String,Class> by the class Hashtable$_String_$_Class_$, whose

116 M. Odersky, E. Runne, and P. Wadler

public class Hashtable<Key, Data extends Object> {
public Hashtable() { ... }
public Data get(Key key) { ... }
public Data put(Key key, Data value) { ... }

}

class HashtableClient {
Hashtable<String,Class> loadedClasses = new Hashtable();
Class loadClass(String name) {

Class c = loadedClasses.get(name);
if (c == null) {

c = Class.forName(name);
loadedClasses.put(name, c);

}
return c;

}
}

Fig. 2. Hashtables in Pizza.

body is generated by replacing each occurrence of Key by String and each occur-
rence of Value by Class. The heterogeneous translation resembles the transla-
tion scheme employed in the TIL compiler for Standard ML [HM95], the generic
instantiation in Ada [oD80] and Modula-3 [CDG+88], and the template expan-
sion process in C++ [Str86]. However, unlike in C++, all type checking in Pizza
is performed before expansion, not afterwards.

The heterogeneous translation poses the problem of keeping track of the
different instances of generic types that are produced at compile-time or link-
time. The Java environment admits an elegant solution to this problem: One
can make use of Java’s dynamic class loading capabilities to generate instances
on demand at run-time. Agesen, Freund and Mitchell introduce a scheme based
on this idea [AFM97]. They argue that the heterogeneous translation supported
by their scheme offers several benefits:

First, since the heterogeneous translation preserves more type information
than the homogeneous translation, it tends to give more freedom to the language
designer. Language constructs such as checked type casts to parameterised types,
generic array creation, or mixins [FKF98] require an explicit representation of
type variables at run time and therefore are only feasible under a heterogeneous
translation. (Consequently, since Pizza was designed to support both transla-
tions, these constructs are missing in Pizza.)

Second, the heterogeneous translation may lead to better run-time perfor-
mance, trading off speed for code size. By specialising a generic type with its
arguments, one can eliminate all type casts and boxing/unboxings introduced
by the homogeneous translation. Furthermore, the specialisations might provide
additional opportunities for subsequent optimisations.

Translating Parameterised Types into Java 117

While these arguments are plausible, they have not yet been verified em-
pirically. We therefore extended the Pizza compiler to allow the heterogeneous
translation as well as the existing homogeneous translation. Moreover the new
translation allows heterogeneous and homogeneous code to be mixed, which is
necessary to support Pizza’s generic methods which are still translated homo-
geneously. We then compared both translations using a range of benchmarks,
including the Pizza compiler itself. The results can be summarised as follows.

– As expected, the heterogeneous translation leads to somewhat faster code
for member access in generic types, and to much faster code for generic
array access. Except for arrays, the performance gains are modest, however.
They do not generally exceed 5%. Furthermore, code involving polymorphic
methods becomes much slower since the interface between homogeneous and
heterogeneous code is complex.

– The increase in code size incurred by the heterogeneous translation can be
substantial. For example, the footprint of the Pizza compiler increases by
about 60%.

– With Sun’s current JDK, the additional classes generated by the hetero-
geneous translation incur a significant class loading overhead, often large
enough to wipe out the performance gains obtained by specialisation.

– In the course of our experiments we also discovered a severe security prob-
lem incurred by the heterogeneous translation. Unless the access checking
in the Java Virtual Machine can be refined, this problem can be avoided
only by restricting the source language to a point where the usefulness of
parameterisation is very much in doubt.

The rest of this paper is organised as follows. Section 2 describes the homoge-
neous translation from Pizza to Java, and Section 3 describes its heterogeneous
counterpart. Section 4 compares the two translations in terms of their secu-
rity aspects. Section 5 compares them empirically in terms of their run-time and
space consumption using a number of benchmark programs. Section 6 concludes.

2 The Homogeneous Translation

The homogeneous translation from Pizza to Java proceeds in three steps, which
affect types, expressions, and declarations. First, Pizza types are mapped to Java
types by erasing all type parameters, and by mapping all type variables to their
upper bound. Then, type conversions are inserted in expressions where needed
to avoid type compatibility errors. The effect of the first two steps is illustrated
by comparing the Pizza program in Figure 2 with its translation in Figure 1.

The first step, type erasure, is defined recursively as follows:

1. The erasure of a parameterised type C〈T1, ..., Tn〉 is its class or interface
name, C.

2. The erasure of an array type A[] . . . [] whose element type A is a type variable
is the abstract class pizza.support.array.

118 M. Odersky, E. Runne, and P. Wadler

abstract public class array {
public abstract int length();
public abstract Object at(int i);
public abstract void at(int i, Object x);
...

}

public class booleanArray extends array {
private boolean[] elems;
public int length() { return elems.length; }
public Object at(int i) { return new Boolean(elems[i]); }
public void at(int i, Object x) {

elems[i] = ((Boolean)x).booleanValue();
}
...

}

Fig. 3. Array classes.

3. The erasure of every other type variable is the erasure of the type variable’s
bound, or Object if no bound was given.

4. The erasure of every other type is the type itself.

Arrays are treated specially in the second rule above. Without this rule, the
array type A[] with type variable A would be mapped to Object[]. The prob-
lem is that Object[] is not convertible to arrays of primitive types except by
copying the whole array, which loses sharing. Instead, generic arrays are mapped
to the abstract class pizza.support.array, from whose definition we excerpt
in Figure 3. This class provides a generic interface to an array. It has a method
to return the length of the array as well as getter and setter methods for access-
ing individual elements. The translation maps accesses to the length field of a
generic array to calls of the length() method, and it maps indexed accesses of
generic arrays to calls of the getter and setter methods.

There are nine subclasses of pizza.support.array, one for each of Java’s
eight basic types, plus one for type Object which is the generic representation
of all arrays of reference type. Each subclass implements the abstract methods
in class pizza.support.array via a private array of the corresponding element
type. As an example, Figure 3 gives the subclass for arrays of booleans.

The Pizza translation of expressions inserts type conversions as needed to
make the resulting Java code legal. Type conversions between reference types
are simply type casts. The Pizza type system guarantees that these type casts
will always succeed at run-time, but they are still necessary to let the generated
classes pass the byte-code verifier, which checks programs according to Java’s
typing rules. Type conversions between basic types and reference types work
with Java’s mirror classes for basic types. For instance, a boolean B is converted

Translating Parameterised Types into Java 119

to an Object with new Boolean(B) and the reverse conversion from an Object
O is ((Boolean)O).booleanValue().

Type conversions between basic arrays and the generic array class involve a
wrapper class for the basic array. For instance, a boolean[] array BS is converted
to pizza.support.array with new booleanArray(BS) and the reverse conver-
sion from a generic array A can be achieved with ((booleanArray)A).elems.

The last step of the translation deals with the problem that type erasure can
destroy overriding and implementation relationships between Pizza methods. As
an example, consider a parameterised interface Iterator<A> and a class that
implements iterators of element type String:

interface Iterator<A> {
A next();
void append(A x);

}
class StringArrayIterator implements Iterator<String> {

String[] a;
public String next() { ... }
public void append(String x) { ... }

}

The translation after erasing types is:

interface Iterator {
Object next();
void append(Object x);

}
class StringArrayIterator implements Iterator {

String[] a;
public String next() { ... }
public void append(String x); { ... }

}

This translation has two problems. First, the implementation of method
next in class StringArrayIterator has a different return type than its def-
inition in interface Iterator, which violates a requirement of the Java lan-
guage [GJS96, Sec. 8.4.6.3]. Second, the implementation relationship between
the two append methods in the original Pizza source does not translate to a cor-
responding relationship in their translations: After translation, append in class
StringArrayIterator takes a String as argument, and hence does not imple-
ment append in interface Iterator, which takes an Object as argument.

To correct these shortcomings, the translation inserts bridge methods to re-
store overriding relationships. Bridge methods have the type after translation of
the implemented or overridden method. Their body simply forwards the call to
the true implementing method, converting argument types as needed.

To avoid name clashes between bridge methods and other methods, and to
avoid the problem with different return types in implementations, all methods
whose type refers to a type parameter are coded with the name of their enclosing
class. For instance, our iterator example would be translated as follows.

120 M. Odersky, E. Runne, and P. Wadler

abstract class Iterator {
Object Iterator$next();
void Iterator$append(Object x);

}
class StringArrayIterator implements Iterator {

String next() { ... }
void append(String x); { ... }
final Object Iterator$next() { return next(); }
final void Iterator$append(Object x) { return append((String)x); }

}

The main strengths of the homogeneous translation are its simplicity and the
compact size of generated code. Its main disadvantage is the run-time overhead
introduced by bridge methods and type conversions. Type conversions from ba-
sic types or basic array types to their generic representations are particularly
expensive since they involve the creation of a wrapper object. These costs are
eliminated in the heterogeneous translation, which we discuss presently.

3 The Heterogeneous Translation

The heterogeneous translation expands the program by specialising generic class-
es according to their arguments, so that types become monomorphic. This ex-
pansion is performed on demand at load time, using a modified class loader which
produces instance classes from class templates. The translation and expansion
process resembles the one described by Agesen, Freund and Mitchell [AFM97],
but there are two complications.

First, parameters in Pizza can be base types as well as reference types. There-
fore, our class loader must be able to instantiate a parameterised class template
with a base type, which generally requires changes to the byte codes. In Age-
sen et al.’s scheme, which only considers reference type parameters, a class file’s
constant pool is all that needs to be changed.

Second, Pizza has polymorphic methods, which are unaffected by the class
loader expansion. Consider for instance the zip method in Pizza’s List class
which joins two lists into a list of pairs.

public class List<A> {
public Pair<A,B> zip(List xs) { ... }
...

}

A specialisation of List’s parameter A to, say, String would leave the following
residual function, which is still polymorphic:

public Pair<String,B> zip(List xs) { ... }

Now, one might consider expanding such polymorphic functions as well as ex-
panding parameterised types. This is difficult, however, because at the point
where we load a class, we may not yet know the possible instances of its poly-
morphic methods. Since we can’t change the code of a class after the class is

Translating Parameterised Types into Java 121

List$_String_$ List$_int_$ List

List$I

List$_String_$ List$_int_$ List

List$I
Object

Cons$_int_$ Cons

Cons$I

Cons$_String_$

Fig. 4. Classes generated under the heterogeneous translation.

loaded, we can specialise generic methods only by placing each in a compiler-
generated inner class of its own, which can then be specialised at each call. This
approach would incur a heavy overhead at both compile-time and run-time.

Instead, our scheme leaves polymorphic methods as they are, using the ho-
mogeneous translation for all type variables which are not parameters. As a
consequence, an object might now be accessed at the same time from code that
is specialised and from code that is not. To allow this, we provide two views for
every parameterised type. The homogeneous view maps the type’s parameters
to a uniform representation, namely the erasures of their bounds. The heteroge-
neous view is simply the specialised version of the class. The homogeneous view
takes the form of a Java interface which all specialisations implement. This dual
view would also provide the opportunity for more refined translation schemes,
which mix homogeneous and heterogeneous translations in order to obtain a
good balance between speed and code size.

We now describe the translation in more detail. For each parameterised class
C<A>, three Java classes are generated.

– An interface C$$I which represents the homogeneous interface to the class,
– A template class C$_$0_$ which the class loader will instantiate to obtain
specialisations as needed,

122 M. Odersky, E. Runne, and P. Wadler

public class List<A> {
public A head;
public List<A> tail;

public List<A> append(A last) {
return new List(head, tail == null

? new List(last, null)
: tail.append(last));

}

public static <A> List<A> fromArray(A[] a) {
List<A> xs = null;
for (int i = a.length - 1; i >= 0; i--)

xs = new List(a[i], xs);
return xs;

}

public List(A x, List<A> xs) {
head = x; tail = xs;

}
}

Fig. 5. Generic list class.

– A static base class C which implements all static methods of C, and also
provides methods to construct new instances of C.

If parameterised classes inherit from other parameterised classes, the inheritance
relationship is translated to an inheritance relationship between corresponding
components. For instance, Figure 4 shows the case of a parameterised class
Cons<A> that extends List<A>. This figure shows the static base classes List
and Cons, instance classes with int and String as the parameter type, and the
homogeneous interfaces List$$I and Cons$$I. Class inheritance is expressed by
solid lines and interface implementation is expressed by dashed lines.

To illustrate the roles of these classes and interfaces, consider the generic list
class of Figure 5. Lists have head and tail fields. There is a method append that
returns a new list with the given element appended to the elements of the current
list. There is also a static polymorphic method fromArray which constructs a
list from the elements of an array.

Homogeneous Interfaces

The homogeneous view of this class will map every occurrence of the type vari-
able A to A’s upper bound, in this case Object. The view is represented by a
Java interface, List$$I, given in Figure 6.

Translating Parameterised Types into Java 123

interface List$$I {
List$$I List_append(Object x$0);
List$$I List_tail();
List$$I List_tail(List$$I x$0);
Object List_head();
Object List_head(Object x$0);

}

Fig. 6. Homogeneous interface for List.

The homogeneous interface contains one access method for every instance
method whose type refers to a parameter of the class. Generic instance fields are
represented by getter and setter methods in the interface.

Templates and Specialisations

A specialisation of class List with a concrete element type X is obtained simply
by replacing the type parameter A with X. Instead of List<X>, which is not a
legal class name in Java, we use List$_X_$.

In addition to all instance members of the original class, specialisations also
contain implementations of all methods in the homogeneous interface. These im-
plementations simply call the original method or load/store the original instance
field, wrapping and unwrapping objects as required.

Specialisations are synthesised at run-time from a template class. Template
classes are very similar to their instantiations, except that they use place-holders
instead of concrete parameter types. Place-holders are named $0, $1, and so on,
up to the number of type parameters of a class. As an example, Figure 7 presents
the template class for lists.

Polymorphic Methods

Polymorphic methods are translated using a modified version of the homoge-
neous translation described in the last section. The erasure of a parameterised
class is now its homogeneous interface. Accesses to fields and methods of such
a class are translated to corresponding accesses in the homogeneous interface.
Another change is that the actual instance type of a polymorphic method is
made available at run time by passing implicit type parameters as additional
parameters of type Class. For instance the method signature

<A> List<A> fromArray(A[] a)

becomes

List<Object> fromArray(Class A, pizza.support.array a)

124 M. Odersky, E. Runne, and P. Wadler

public class List$_$0_$ implements List$$I {
public $0 head;
public List$_$0_$ tail;

public List$_$0_$ append($0 last) {
return new List$_$0_$(head, tail == null

? new List$_$0_$(last, null)
: tail.append(last));

}

public List$_$0_$($0 x, List$_$0_$ xs) {
super(); head = x; tail = xs;

}

/* Implementations of interface functions for homogenous access */

public Object List_head() { return (Object)head; }
public Object List_head(Object x$0) {

head = ($0)x$0; return x$0;
}
public List$$I List_tail() { return tail; }
public List$$I List_tail(List$$I x$0) {

tail = (List$_$0_$)x$0; return x$0;
}
public List$$I List_append(Object x$0) { return append(($0)x$0); }

}

Fig. 7. Template class for List.

We have not yet explained how instances of a parameterised type are created
from within a polymorphic method. The matter is trivial whenever the param-
eters are known types or type parameters of the enclosing class. In this case we
simply invoke the corresponding constructor of the instance class (or its tem-
plate). But if some parameters are local type variables of a polymorphic method,
the correct instance is known only at run time, when the actual argument type
is passed. In these situations, we have to resort to Java’s reflection library for
object construction. For example, the object allocation in method fromArray
would involve the following three steps.

// Create class of object to be allocated:
Class list_A = Class.forName("LinkedList$_" + A.getName() + "_$);

// Obtain constructor given argument types:
Constructor constr = list_A.getConstructor(new Class[]{A, list_A});

// Invoke constructor:
return (LinkedList$$I) constr.newInstance(new Object[]{x, xs});

Translating Parameterised Types into Java 125

To make this scheme reasonably efficient, both class and constructor objects are
cached in hashtables which are indexed by the argument type(s). There will be
one such hashtable for every constructor of a parameterised class. Using caching,
each constructor method will be looked up only once through the reflection inter-
face. Caching was essential in our implementation since method and constructor
lookup was very slow. With caching, we observed a slowdown of between 2 and
3 for programs that used polymorphic static methods exclusively, as compared
to the same programs using instance methods. Without caching, the slowdown
was about a factor of 500.

The Specialising Class Loader

The heterogeneous translation uses a customised class loader for expanding
template classes with their actual type parameters. The class loader inher-
its from class java.lang.ClassLoader, overriding method loadClass(String
name, boolean resolve). Our new implementation of loadClass scans the
given name for embedded type parameter sections, delimited by $_ and _$ brack-
ets. If a parameter section is found, a template for the class constructor is loaded
and expanded with the given parameter(s). Once loaded, template classes are
kept in a cache for subsequent instantiations.

A classfile consists in essence of a constant pool which holds all constant
information such as classnames, method descriptors and field types, a fields sec-
tion and a methods section [LY96]. The code for all methods and for variable
initialisers is stored in code attributes attached to the methods or the class.

Expansion of a classfile consists of two steps. The first step involves replacing
in the constant pool all occurrences of a place holder name with the name of
the corresponding actual type parameter. Quite surprisingly, this is all that is
needed for expanding classes with reference type parameters.

If type parameters are basic types, a second step is required to adapt code
blocks to the actual parameters. The Java Virtual Machine uses different byte-
code instructions for accessing data of different type groups. For instance, a local
variable of type int is accessed with the instruction iload whereas aload is used
if the variable is of reference type. To help the class loader find all instructions
that need to be adapted, the compiler generates a Generic attribute that gives
the offsets of these instructions relative to the start of the code block.

4 Security Implications

The homogeneous and heterogeneous translations have quite different security
implications. Under the homogeneous translation, a Pizza program is no more
secure than the generated Java code after type erasure. Since type parameters
are erased by the translation, we can not always guarantee that a parameterised
type is used at run-time with the type parameter indicated in the source. As
Agesen et al. [AFM97] argue, this constitutes a security risk as users might
expect run-time type-checking to extend to fully parameterised types.

126 M. Odersky, E. Runne, and P. Wadler

The heterogeneous translation does not have this problem, since all type
information is maintained at run-time. Rather to our surprise, the heteroge-
neous translation nevertheless fits poorly with the security model of Java. We
encountered two difficulties, one with visibility of instance methods, and one
with visibility of type parameters.

Visibility of Instance Methods

Because the Pizza implementation mixes homogeneous and heterogeneous trans-
lations, all the heterogeneous instantiations of a class must be accessible via a
common interface. For instance, in Section 3 there is a list interface (Figure 6)
that is implemented by the list template (Figure 7). In Java, all methods imple-
menting an interface are required to be public, and hence the Pizza translation
works only when all instance methods are public.

If the template class has no superclass (other than Object), we could solve
this problem by replacing the interface with an abstract class, since abstract
classes do allow non-public members. Unfortunately, the template class may
already have a superclass that depends on the type parameter, so the multiple
inheritance provided by interfaces is essential.

If one were allowed to change the Java security model, the problem could be
fixed by generalising interfaces to allow non-public methods. Since the JVM is
currently being implemented in silicon, such a change seems unlikely.

Thus, the combination of homogeneous and heterogeneous translations of
Pizza requires all instance methods of a parameterised class to be public, which
severely restricts the utility of the Java visibility model. This problem would
not arise if one adopted a pure heterogeneous translation, since then homoge-
neous interfaces would not be required. By contrast, the next security problem
is inherent in the heterogeneous translation,

Visibility of Types

The JVM security model supports only two kinds of visibility for classes: package-
wide and public visibility. It is not possible to use a class to reference objects
outside a package unless the class is declared to be public. (This restriction holds
even if the verifier is disabled, since the JVM specification [LY96] requires the
virtual machine to throw an IllegalAccessError if a class refers to any other
class that is in another package and not public.)

Consider an instantiation C<D> of a parameterised class C defined in package
P, applied to a parameter class D defined in a different package Q. There are
two possibilities: either class D must be public (in which case we can place the
instantiation in package P), or else the body of class C must refer only to public
classes (in which case we can place the instantiation in package Q).

Since classes usually refer to non-public classes in their package (otherwise,
why have packages?), the Pizza compiler in its heterogeneous version limits itself
to the first case: classes used as type parameters of public types defined in another

Translating Parameterised Types into Java 127

package must be themselves be public. This rule severely restricts the utility of
the Java visibility model.

Further, even if one were allowed to change the Java security model, it is not
clear how to fix this problem.

5 Performance Evaluation

We initially believed that the heterogeneous translation would result in notably
faster code than the homogeneous translation. We expected a certain loss at
start time due to the class expansion, but assumed that than the execution —
especially of classes parameterised with basic types — should be faster, as the
heterogeneous translation does not need to convert between boxed and unboxed
representations.

To evaluate the heterogeneous translation we compared the execution of sev-
eral small benchmark programs. We used our own class loader in both cases. We
ran each test at least 50 times. We ran all benchmarks on Sun’s JVM 1.1 final
on a Sun Ultra Sparc 1.

Micro Benchmarks

Our micro benchmarks try to measure one aspect of Java’s execution in both
translations. The code for these benchmarks is found in Appendix A.

The two versions of the list-reverse benchmark are designed to estimate the
speedup of the heterogeneous translation for member access, as well as its slow-
down for polymorphic methods.

The List<int> benchmarks show that polymorphic methods slow down
significantly as every access to the list objects is made via the homogeneous
interface. The instance reverse method shows only a slight speedup; we had ex-
pected a greater difference. We have smaller startup costs in the List<String>
benchmarks as the class expansion is much easier for reference types.

The cell benchmark measures access of a variable of a parameterised type.
This time, the heterogeneous translation yields a significant speedup for base
types, which has to do with the fact that the variable accesses dominate all
other costs. With a reference type, the heterogeneous translation shows a smaller
speedup, since instead of an unboxing method call only an additional type cast
is required. The cell benchmark was also used by Myers et al. to to test their
implementation of parameterised types for Java [MBL97]. Our findings show a
somewhat larger speedup for the heterogeneous translation compared to theirs
(27% as opposed to their 14%).

The next set of benchmarks were designed to compare the efficiency of array
accesses in both translations. We used two implementations of a reverse func-
tion for Pizza’s Vector class. One is part of the class itself and accesses all data
directly. This version does no runtime wrapping for the basic types in the homo-
geneous translation within the Vector class. But it has the array access overhead
including wrapping and unwrapping in the pizza.support.array class.

128 M. Odersky, E. Runne, and P. Wadler

Table 1. Micro benchmark results; times given in seconds

benchmark iterations homogeneous heterogeneous %

Cell<int> 1,000,000 4.26 3.10 73
Cell<Integer> 1,000,000 3.22 3.09 96

List<int> instance reverse 10,000 110.34 93.37 85
List<int> static reverse 10,000 110.48 403.77 365
List<String> instance reverse 10,000 109.77 94.76 86
List<String> static reverse 10,000 108.78 371.97 342

Vector<int> internal 10,000 78.71 21.60 27
Vector<int> external 10,000 125.81 42.55 34
Vector<String> internal 10,000 39.41 22.58 57
Vector<String> external 10,000 62.33 42.54 68

Hashtable<int, ..> 10,000 161.20 276.54 172
Hashtable<Integer, ..> 10,000 161.03 168.41 105

The second version is not local to the Vector class and has to access the
data via methods. The homogeneous translation needs to introduce wrapping
and unwrapping for basic types as well as for the arrays.

The vector benchmarks show a large speedup for Vector<int>. The ho-
mogeneous translation performs not quite as bad with a reference type as the
element type, since then no runtime wrapping overhead is incurred. The dif-
ferences between the two translations decrease in the external version of the
benchmark since there array accesses are less frequent in the instruction mix.

A slightly more involved benchmark measured the efficiency of hashtable
accesses under both translations. We measured the efficiency of the get operation
for hashtables with keys of the basic int type. To our surprise, the heterogeneous
translation performed much worse than the homogeneous translation on this
benchmark. The reason for this effect is that a get operation on a hashtable
involves several calls to methods hashCode and equals of get’s key parameter.
In the homogeneous translation, a hashtable key will be boxed once, before it is
passed as a parameter to get. But in the heterogeneous translation the key will
be passed in unboxed form, and will then be boxed each time a hashCode and
equals method is invoked. Hence, we have increased rather than reduced the
number of type conversions that need to be performed. The same effect does not
arise if the key parameter is of a reference type, since then all type conversions
in get are widening casts from a reference type which do not translate into any
bytecode instructions at all.

Macro Benchmark

As large benchmark we used the execution of the Pizza compiler itself. We trans-
lated it once homogeneously and once heterogeneously. Both versions then did
the same job. They translated the compiler source and the sources of Pizza’s
API packages pizza.lang and pizza.util to heterogeneous classes.

Translating Parameterised Types into Java 129

We observed that under the heterogeneous translation the number of loaded
classes increased by 85% and the total code size increased by 60%. Code size
was measured as the number of bytes passed to the class loader’s defineClass
method. This includes both constant pool and code blocks of classes. We further
observed a slowdown of 26% for the heterogeneously compiled compiler. This
slowdown was rather unexpected. To isolate the different factors that might
contribute to the slowdown we ran the compiler twice on the same data such
that during the second run no more classes needed to be loaded. This showed
that of the total slowdown 19 percentage points are attributable to increased
class loading overhead and 7 percentage points are attributable to execution
overhead. The additional class loading overhead is incurred both by the fact
that many more classes need to be loaded, and by the fact the loading of the
additional classes involves an extra expansion step.

A major factor in the execution overhead is the use of polymorphic methods
such as List.map, List.forAll, which are heavily used in some parts of the
Pizza compiler. The map method in particular is expensive since it involves the
construction of parameterised object instances through the reflection library.

Table 2. Execution of the Pizza compiler

loaded size system duration
classes classes in seconds

homogeneous 213 702 kB 28 93
heterogeneous 393 1251 kB 31 117

parameterised classes 171
templates used 16
size of the templates 53.1 kB

6 Conclusion

In summary, we found that at least for the current JVM implementation the het-
erogeneous translation of parametric polymorphism has not fulfilled its initial
promise. A significant increase in code size did not yield a clear improvement in
runtime efficiency. We also noted a severe incompatibility between the heteroge-
neous translation and Java’s package based security model.

Sun’s JVM has several peculiarities which affected the outcome of the bench-
marks: The memory management is very inefficient, loaded classes are looked up
in a linear array, which slows down execution as more classes are loaded, and
all instructions are interpreted. It is unclear how the comparative performance
of both translations would be affected with a different machine. A better mem-
ory management would work primarily in favor of the homogeneous translation,
since it makes boxing operations more efficient. On the other hand, a better class
loading scheme would primarily benefit the heterogeneous translation.

130 M. Odersky, E. Runne, and P. Wadler

We also attempted to run our benchmarks on Microsoft’s virtual machine for
Java (JView 2.0 beta on Windows NT), but were not able to complete them, due
to problems in Microsoft’s implementation of the reflection library. In the future,
we hope to have additional data for both the latest Microsoft virtual machine and
Sun’s Hotspot machine.

Acknowledgments

This work was supported by Sun Laboratories Academic Collaboration Grant
“Measuring the Cost of Parameterised Types in Java.” We thank David Detlefs
and Guy Steele for their support, suggestions, and helpful criticisms.

References

AFM97. Ole Agesen, Stephen N. Freund, and John C. Mitchell. Adding type pa-
rameterization to the java language. In Proc. ACM Conference on Object-
Oriented Programming: Systems, Languages and Applications, 1997.

Bru97. Kim Bruce. Increasing Java’s expressiveness with ThisType and match-
bounded polymorphism. Technical report, Williams College, 1997.

CDG+88. L. Cardelli, J. Donahue, L. Glassman, M. Jordan, B. Kalsow, and G. Nelson.
Modula-3 report. Technical Report 31, DEC SRC, 1988.

FKF98. Matthew Flatt, Shriram Krishnamourthi, and Matthias Felleisen. Mixins
for java. In Proc. 25th ACM Symposium on Principles of Programming
Languages, January 1998.

GJS96. James Gosling, Bill Joy, and Guy Steele. The Java Language Specification.
Java Series, Sun Microsystems, 1996. ISBN 0-201-63451-1.

HM95. Robert Harper and Greg Morrisett. Compiling polymorphism using in-
tensional type analysis. In Proc. 22nd ACM Symposium on Principles of
Programming Languages, pages 130–141, January 1995.

Ler90. Xavier Leroy. Efficient data representation in polymorphic languages. In
P. Deransart and J. MaGluszyński, editors, Programming Language Imple-
mentation and Logic Programming, pages 255–276. Springer-Verlag, 1990.
Lecture Notes in Computer Science 456.

LY96. Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification.
Java Series, Sun Microsystems, 1996. ISBN 0-201-63452-X.

MBL97. Andrew C. Myers, Joseph. A. Bank, and Barbara Liskov. Parameterised
types for Java. In Proc. 24th ACM Symposium on Principles of Program-
ming Languages, pages 132–145, January 1997.

oD80. United States Department of Defense. The Programming Language Ada
Reference Manual. Springer-Verlag, 1980.

OW97a. Martin Odersky and Philip Wadler. Pizza into Java: Translating theory
into practice. In Proc. 24th ACM Symposium on Principles of Programming
Languages, pages 146–159, January 1997.

OW97b. Martin Odersky and Philip Wadler. Two approaches to type structure, 1997.
SA95. Zhong Shao and Andrew W. Appel. A type-based compiler for Standard

ML. In Proc. 1995 ACM Conf. on Programming Language Design and
Implementation, (ACM SIGPLAN Notices vol. 30), pages 116–129, June
1995.

Translating Parameterised Types into Java 131

Str86. Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley,
1986.

Tho97. Kresten Krab Thorup. Genericity in java with virtual types. In Proc.
ECOOP ’97, LNCS 1241, pages 444–471, June 1997.

Tor97. Mads Torgersen. Virtual types are statically safe. Note, circulated on the
java-genericity mailing list, 1997.

A Code of Micro Benchmarks

Static List Reverse

static <A> List<A> reverse(List<A> xs) {
List<A> ys = Nil();
while (true) {
switch (xs) {
case Nil(): return ys;
case Cons(A x, List<A> xs1): ys = Cons(x, ys); xs = xs1; break;

} } }

Instance List Reverse

class List<A> {

...

List<A> reverse() {
List<A> xs = this;
List<A> ys = Nil();
while (true) {
switch (xs) {
case Nil(): return ys;
case Cons(A x, List<A> xs1): ys = Cons(x, ys); xs = xs1; break;

} } }
}

Cell Access

class Cell<A> {
A elem;
Cell() {}
void add(A elem) { this.elem = elem; }
A get() { return elem; }

}
Cell<int> c = new Cell();
c.add(42);
for (int i=0; i < iterations; i++) int j = c.get();

132 M. Odersky, E. Runne, and P. Wadler

Internal Vector Reverse

public class Vector<A> {
...
public void reverseElements() {
for (int i = 0; i < elementCount / 2; i++) {
A e = elementData[elementCount - i - 1];
elementData[elementCount - i - 1] = elementData[i];
elementData[i] = e;

} } }

External Vector Reverse

public void reverseElementsInt(Vector<int> v) {
for (int i = 0; i < v.size() / 2; i++) {
int e = v.elementAt(v.size() - i - 1);
v.setElementAt(v.elementAt(i), v.size() - i - 1);
v.setElementAt(e, i);

} }

Main Loop of Hashtable Benchmark

for (int i=0; i < 1000; i++) table.put(i, "A"+i);
for (int j=0; j < iterations; j++) {
for (int i=0; i < 1000; i++) {
String s = table.get(i);

} }

	Introduction
	The Homogeneous Translation
	The Heterogeneous Translation
	Security Implications
	Performance Evaluation
	Conclusion
	Code of Micro Benchmarks

